Do Onshore Wind Farms Come with Geotechnical Risk?

Thursday, 22 September 2022

With the whole world competing in the race to net-zero, renewable electricity is at the top of the agenda. Wind energy accounted for 24% of the total electricity generation in 2020; with offshore wind accounting for 13% and onshore wind accounting for 11%.​ With the British Government’s bold new commitment to 95% low carbon energy by 2030, many in the industry are looking toward renewable energy to solve this dilemma.

 

Geotechnical challenges


 

Inevitably we will see increased interest in developing wind farms in the upland areas of the UK, especially in those with peatland topography, where the high elevations and open space provide favourable conditions for power generation. But peat is a challenging geotechnical material, with its structure rendering its behaviour atypical and quite unpredictable due to its:

- Low density

- High compressibility

- High moisture content

- Fibrous structure

- Low bearing capacity

 

Thus, the development of upland wind farms presents a strong opportunity for wind power generation. However, it also creates an unforeseen threat that needs to be addressed.

 

What’s so special about peat?




For those not in the know, peat is a type of surface soil that consists of partially decomposed organic matter (e.g. plant matter) and is only created under conditions of waterlogging, oxygen deficiency, high acidity, and nutrient deficiency. There are 3 main types of peat in the UK: blanket bog, raised bog, and fens, all of which are important organic materials that preserve archaeological finds, promote biodiversity, and serve as a valuable terrestrial carbon store here in the UK.

 

According to the UK Centre for Ecology and Hydrology peatlands are amongst the most carbon-rich ecosystems on Earth, as they lock up carbon by not allowing organic material to fully decompose. As a result, it is estimated that deep peat stores at least 3,000 million tonnes of carbon, twenty times the carbon stored in the whole of the UK’s forest biomass.

 

The geotechnical risk of peat


 

Peatlands currently cover over 10% of the UK’s land area with the majority lying in Scotland and the North and South Pennines. They provide windy, and relatively cheap, land for developers looking to further our green journey. However, due to peats composition, any structure built on it is likely to slowly sink, despite foundational infrastructure being put in place.

 

This not only causes damage to assets as the ground shrinks/swells but also causes the peat to compress. As the peat is compressed and disturbed, its waterlogged infrastructure starts to drain and oxygen in the peat increases. As a result, the carbon previously locked in by the partially decomposed plants is released.

 

Not only does this greatly increase the worlds greenhouse gas emissions, but it also creates permanent damage to the environment around it. This includes increasing flood risk alongside causing the surrounding area to swell, posing an incredible risk to infrastructure.

 

Building wind farms on peatlands


 

Due to the unpredictable nature of peatland, it is unlikely the land is already occupied by developments and therefore cheaper than their coastal alternative. As a result, they are a common choice for many wind farm projects.

 

When developing a wind farm project, one of the first structures to be built is a “floating road”. This structure consists of a wide flat road resting on deep peat with no reinforcements attaching it to bedrock (hence the name) and is typically used for maintenance. However, many experts have described these structures as incredibly damaging to the peatlands as a result of their structure. While they are essential for the wind farm, their wide flat nature compresses one of the most valuable parts of the peat causing excessive drainage, putting any structures surrounding them at risk of subsidence. This is especially worrisome when you consider the fact that the average wind turbine weighs between 164-276 tonnes and could create widespread damage if it begins to subside.

 

InSAR monitoring could be the answer


 

But with the UK’s largest windfarm currently being built on the Isle of Shetland’s peatland, it doesn’t look like development is going to stop anytime soon. So how do we reduce the risks associated with building renewable energy sources on peatland?

 

The key is monitoring, specifically InSAR monitoring.

 

InSAR stands for interferometric synthetic aperture radar and is a radar technique used in ground remote sensing to generate accurate maps of surface deformation or digital elevation, providing precise high resolution ground movement data accessible for continuous updates for maintenance. Through raw satellite transmissions, peatlands can be effectively monitored to show compression and other ground movements before it becomes too late.

 

While many developers do monitor their peatlands for the first three years, unfortunately, current techniques do not cover their complex nature. Peat is a long-term habitat forming over hundreds of years, meaning that it cannot easily be fixed once it has degraded. On top of this, when compression occurs as a result of infrastructure, the movement is minimal only being detected by traditional techniques such as boreholes after 10 years. Unfortunately, by this point it is too late to recover the peatland and any infrastructure built on top may be classed as unstable and will require considerable mitigation measures.

 

InSAR monitoring can detect ground movements to an mm level of accuracy, allowing these movements to be detected earlier on than traditional methods. To add to this, SatSense’s historic UK data from the past 10 years means previous movements can be analysed and reviewed by earth observation specialists to understand if a section of land could be viable for project development before work begins.

 

The future


 

InSAR monitoring gives us a unique look at how our landscape has and will change over time, with its data already being used to help other infrastructures such as water networks, railways, bridges, and coal tips. So why can’t it be used for wind farms built on peatlands?

 

At SatSense, we believe that the complex ground movement issues surrounding renewable energy infrastructures such as wind farms must be addressed. Our team of experts is on hand to help you through accurate and accessible data. For more information on this topic, contact our team.
SatSense Santa Tracker: Bringing Christmas Magic to Your DoorstepThursday, 05 December 2024 SatSense and Zonguldak Bülent Ecevit University Partner to Revolutionise Ground Movement Monitoring in TürkiyeTuesday, 23 July 2024 SatSense continues to support STEM students to drive innovationWednesday, 08 May 2024 Are UK water companies prepared for another record-breaking summer?Friday, 23 February 2024 Monitoring Rail Infrastructure Using InSARWednesday, 07 February 2024 Revolutionising Infrastructure Monitoring Using InSAR DataThursday, 01 February 2024 SatSense Gets Contract for the DRIPIN Demonstration ProjectWednesday, 24 January 2024 How can asset managers get the most out of InSAR? Monday, 21 August 2023 How can InSAR data be used in GIS software? Monday, 21 August 2023 7 Reasons Why Civil Engineers Should Be Using InSARMonday, 21 August 2023 SatSense and GNS Science Partner to Revolutionise Ground Movement Monitoring in New ZealandThursday, 20 July 2023 Do Onshore Wind Farms Come with Geotechnical Risk?Thursday, 22 September 2022 Our Water Networks Handled the Heat Last Time But What About the Next?Thursday, 11 August 2022 Analysing Bridge Movement Using Satellite DataFriday, 06 May 2022 To What Extent Can We Monitor Ageing Infrastructure?Tuesday, 03 May 2022 The Climate Change Challenge Facing Rail InfrastructureWednesday, 27 April 2022 Keeping Rail Asset Management on the Right Tracks with InSARWednesday, 06 April 2022 Remotely Monitoring Ground Movement for Water UtilitiesTuesday, 22 March 2022 A Damming DilemmaThursday, 10 March 2022 How Can Asset Managers Remotely Monitor Ground Movement?Tuesday, 08 March 2022 Using InSAR to Monitor Assets in Remote LocationsMonday, 28 February 2022 Overcoming Site Monitoring Challenges with InSARWednesday, 23 February 2022 Project Update: Using InSAR Data to Monitor Disused Coal Tips in WalesFriday, 28 January 2022 How Can Remote Technology Aid Tunnelling Engineers?Thursday, 13 January 2022 What Did 2021 Look Like for SatSense?Monday, 20 December 2021 Using InSAR to Monitor Rates of Coastal ErosionWednesday, 15 December 2021 Is it Time to Ground the Extraction of Groundwater?Tuesday, 30 November 2021 SatSense Appoints John McArthur as Chairman to Prepare for Further GrowthTuesday, 30 November 2021 Dam Important DataTuesday, 05 October 2021 Real Time Data Dashboards and the Future of Smart Asset MonitoringTuesday, 05 October 2021 LiDAR vs InSARMonday, 23 August 2021 SatShop Delivers Ground Movement Data at the Click of a ButtonThursday, 29 July 2021 The Light at the End of the TunnelWednesday, 21 July 2021 Join SatSense – we’re hiring!Thursday, 15 July 2021 Analysing movements of the UK’s railway with Network RailThursday, 24 June 2021 Using satellite data to reduce water leakageMonday, 19 April 2021 SatShop portal FAQ’s Friday, 09 April 2021 Satellite data at your fingertipsThursday, 04 March 2021 Avoiding mining disasters with InSAR dataTuesday, 26 January 2021 Using SatSense data to accelerate your geotechnical desk studyWednesday, 16 December 2020 Water treatment works expansionWednesday, 09 December 2020 Using InSAR data to magnify insight in previously unsighted industriesTuesday, 24 November 2020 Ways to improve InSAR data coverageWednesday, 07 October 2020 Automatically detecting movement of infrastructureFriday, 31 July 2020 Getting ground movement direction out of our dataWednesday, 08 July 2020 Creating the SatSense Data PortalTuesday, 07 July 2020 Detecting House Subsidence Using Satellites and InSARFriday, 05 June 2020 Risk indices for detecting ground movement issues using InSARMonday, 01 June 2020 Detecting sinkholes from spaceFriday, 08 May 2020 How SatSense stays ahead of the curveThursday, 07 May 2020 Matt reflects on joining SatSense and says a bit about himselfWednesday, 22 April 2020