Remotely Monitoring Ground Movement for Water Utilities

Tuesday, 22 March 2022

Effective maintenance of water utility assets is key to ensuring safety and water quality. Even the smallest ground movement near to, or at, water assets can have the biggest effects. Water asset managers need to be able to comprehensively monitor their pipelines and facilities to prevent bursts, failure, and interrupted services due to destructive ground and structure movements.

 

Influencing ground movement with manmade activities


 

As we build manmade water facilities and stores, like a dam, we alter the natural landscape. To make a reservoir, processes that destruct the normal regime of underground and surface water are carried out. Combine these hydrotechnical construction operations with the soils used to form reservoirs, like silt and clay, and the potential for related ground movement is laid bare.

 

For these materials are highly susceptible to erosion, shrinking, and swelling as water levels fluctuate, most prominently during seasonal change. For example, the water table can fall very low during dry periods; during wet seasons, the water table rises abruptly and a considerable part of the reservoir floor is under the influence of strong uplift. In turn, open cracks can occur and cause issues.

 

The effects of ground movement on water utilities


 

Back in the mid-1850s, Leeds selected the Washburn Valley to supply its water. Three reservoirs were built around Fewston Village, with a total water storage capacity of an immense 8.2bn litres. Though such a volume aided the city’s increased demand for water, it also put huge pressures on the land.

 

Whilst puddled clay was selected to construct the reservoirs due to its watertight qualities, the assets themselves were built atop of shale, typically a flimsy foundation. As such, there were several landslides during the construction of the reservoirs, with Fewston residents experiencing large cracks running throughout the walls of their houses. In many cases, homes were so badly damaged that they became inhabitable.

 

Gravel and sand, on the other hand, shrink and swell at lesser rates but are more prone to getting washed away by water flow. So, for example, if one of the water pipes that makes up our complex water transportation network gets damaged and water leaks, the effects on the surrounding ground and infrastructure can be considerable. When water saturates or moves through the ground, it can cause foundations to give way, causing severe damage to buildings. Especially when such processes remain undetected for long periods!

 

How does water cause subsidence?




In many areas groundwater is extracted from the earth to supply us with the water we need to survive. But as we extract water from the rocks below the ground, we disrupt the formation of rock. Seeing as water is a significant component of the ground’s structure, when we withdraw it, rock can become prone to falling in on itself. The resultant downwards ground movement, subsidence, is often experienced at acquifiers.

 

It's important for asset managers of acquifiers to ensure that the rate at which water is being pumped out doesn’t exceed the rate at which groundwater is replenished for extended periods. Firstly, to ensure water doesn’t run out. Secondly, the more water pumped, the more compact the soil becomes. The acquifier reduces in size, meaning the amount of water it can hold decreases, too.

 

One of the most prominent examples of exploiting groundwater stores is in Mexico City. The foundation of the Basilica of Our Lady of Guadalupe is sinking; the area has long extracted groundwater at this location, provoking both land subsidence and acquifier compaction. Buildings have been damaged, roads harmed, and general disruptions to water supply and waste drainage have been felt by the population.

 

The figure below demonstrates the ground movement velocities over part of Mexico City from 2016 to 2022 that SatSense's technology has been able to show!

 

Ground movement velocities over part of Mexico City from 2016 to 2022


Traditional monitoring VS InSAR




Water assets are traditionally monitored using gauges and GPS receivers. However, installing these devices at every water site or store across a country, from dams to reservoirs to pipelines, is a costly and time-consuming exercise requiring ample human effort and travel. Not only this, but gauges rely on the ability to be located at specific points in order to accurately reflect the geophysical complexity of the landscape. Yet, where sites are extremely remote or terrains are challenging, monitoring can become intermittent by nature.

 

What’s more, GPS stations are prone to short timespans of records and data gaps. These tools also rely on in-person inspections to ensure they are working effectively. If it’s difficult to place a gauge at a certain site, it’s also going to be difficult for engineers to functionally access it.

 

As such, crucial data on the behaviour of the ground surrounding a water asset can be missed; even when it is detected, the delay from discovery to response can be costly, both in terms of time and consequence. Preventing, rather than reacting to, water-related crises should be a key focus for asset managers of water facilities. In order to achieve this, it’s essential to increase access to timely, accurate data that is continuously available.

 

How SatSense use InSAR


 

The satellite technology, InSAR, is an effective complementary technique - in some cases, the alternative to such traditional techniques. At SatSense, with data from the Sentinel-1 satellites, we use InSAR processing to obtain millimetre-scale measurements of ground movement over huge areas, including the UK’s entire water pipeline network.

The data is retrieved weekly, providing water utility companies and water facilities managers with insightful information on the state of the ground around their assets. Not only does this enable professionals to focus on the results of the data rather than repetitive monitoring tasks, it also promotes strategic decision making. Whether that be for maintenance, replacement, or future activities, options can be considered more informatively and standards upheld.

 

Measuring the risk of pipeline failure with InSAR


 

At the beginning of 2021, SatSense secured a study with the European Space Agency (ESA) Space Solutions. Using InSAR, we demonstrated the correlation between our ground movement-derived metrics and pipe failure, working with a number of UK water utilities. We are now providing this service both in the UK and overseas, and plan to augment the service further with key partners.

 

If you would like to find out more about how our solution is helping asset managers to lessen environmental damage, reduce maintenance costs, and avoid leaks, get in touch!
SatSense Santa Tracker: Bringing Christmas Magic to Your DoorstepThursday, 05 December 2024 SatSense and Zonguldak Bülent Ecevit University Partner to Revolutionise Ground Movement Monitoring in TürkiyeTuesday, 23 July 2024 SatSense continues to support STEM students to drive innovationWednesday, 08 May 2024 Are UK water companies prepared for another record-breaking summer?Friday, 23 February 2024 Monitoring Rail Infrastructure Using InSARWednesday, 07 February 2024 Revolutionising Infrastructure Monitoring Using InSAR DataThursday, 01 February 2024 SatSense Gets Contract for the DRIPIN Demonstration ProjectWednesday, 24 January 2024 How can asset managers get the most out of InSAR? Monday, 21 August 2023 How can InSAR data be used in GIS software? Monday, 21 August 2023 7 Reasons Why Civil Engineers Should Be Using InSARMonday, 21 August 2023 SatSense and GNS Science Partner to Revolutionise Ground Movement Monitoring in New ZealandThursday, 20 July 2023 Do Onshore Wind Farms Come with Geotechnical Risk?Thursday, 22 September 2022 Our Water Networks Handled the Heat Last Time But What About the Next?Thursday, 11 August 2022 Analysing Bridge Movement Using Satellite DataFriday, 06 May 2022 To What Extent Can We Monitor Ageing Infrastructure?Tuesday, 03 May 2022 The Climate Change Challenge Facing Rail InfrastructureWednesday, 27 April 2022 Keeping Rail Asset Management on the Right Tracks with InSARWednesday, 06 April 2022 Remotely Monitoring Ground Movement for Water UtilitiesTuesday, 22 March 2022 A Damming DilemmaThursday, 10 March 2022 How Can Asset Managers Remotely Monitor Ground Movement?Tuesday, 08 March 2022 Using InSAR to Monitor Assets in Remote LocationsMonday, 28 February 2022 Overcoming Site Monitoring Challenges with InSARWednesday, 23 February 2022 Project Update: Using InSAR Data to Monitor Disused Coal Tips in WalesFriday, 28 January 2022 How Can Remote Technology Aid Tunnelling Engineers?Thursday, 13 January 2022 What Did 2021 Look Like for SatSense?Monday, 20 December 2021 Using InSAR to Monitor Rates of Coastal ErosionWednesday, 15 December 2021 Is it Time to Ground the Extraction of Groundwater?Tuesday, 30 November 2021 SatSense Appoints John McArthur as Chairman to Prepare for Further GrowthTuesday, 30 November 2021 Dam Important DataTuesday, 05 October 2021 Real Time Data Dashboards and the Future of Smart Asset MonitoringTuesday, 05 October 2021 LiDAR vs InSARMonday, 23 August 2021 SatShop Delivers Ground Movement Data at the Click of a ButtonThursday, 29 July 2021 The Light at the End of the TunnelWednesday, 21 July 2021 Join SatSense – we’re hiring!Thursday, 15 July 2021 Analysing movements of the UK’s railway with Network RailThursday, 24 June 2021 Using satellite data to reduce water leakageMonday, 19 April 2021 SatShop portal FAQ’s Friday, 09 April 2021 Satellite data at your fingertipsThursday, 04 March 2021 Avoiding mining disasters with InSAR dataTuesday, 26 January 2021 Using SatSense data to accelerate your geotechnical desk studyWednesday, 16 December 2020 Water treatment works expansionWednesday, 09 December 2020 Using InSAR data to magnify insight in previously unsighted industriesTuesday, 24 November 2020 Ways to improve InSAR data coverageWednesday, 07 October 2020 Automatically detecting movement of infrastructureFriday, 31 July 2020 Getting ground movement direction out of our dataWednesday, 08 July 2020 Creating the SatSense Data PortalTuesday, 07 July 2020 Detecting House Subsidence Using Satellites and InSARFriday, 05 June 2020 Risk indices for detecting ground movement issues using InSARMonday, 01 June 2020 Detecting sinkholes from spaceFriday, 08 May 2020 How SatSense stays ahead of the curveThursday, 07 May 2020 Matt reflects on joining SatSense and says a bit about himselfWednesday, 22 April 2020