Our Water Networks Handled the Heat Last Time But What About the Next?

Thursday, 11 August 2022

The dizzying height of 40.3°C was recorded in Lincolnshire during the UK’s most recent heatwave, marking a milestone in its environmental history. With the government declaring the climate change-induced event a ‘national emergency’, our nation braced for a multitude of severe impacts.

 

From transport networks to emergency services, the infrastructure we heavily rely on was put under stress like never before. Predictably, the intense heat brought about a mammoth surge in demand for water, with Thames Water using an extra 300 million litres of water each day. Combined with projections that global evaporation will increase by a staggering 16% by the end of the century, there’s growing concern about the influence ground and soil behaviour has over the resilience of our water networks.

 

Is our water infrastructure under threat?


 

Due to a lack of capacity to effectively manage soaring temperatures, it was touted that 20% of infrastructure was under ‘significant threat’. Our water networks fast-became a high-priority risk, with enormous need putting considerable pressure on the pipes transporting water to the public. Numerous water utilities companies experienced significant changes to the status-quo, with our friends in the industry telling us they had to find ways to supply water ‘by any means necessary’. Additional overground pumping and the employment of tankers to pump extra water attempted to meet the extraordinary demand in challenging circumstances – Bristol Water even diverted teams away from planned works to emergency repairs.

 

So, as ‘normal’ summer temperatures resume, what’s the lasting impact of this historic heatwave on our water network? A nation most accustomed to hearing of the effects cold weather has on water pipes freezing and bursting is now a nation aware of issues at the other end of the temperature scale. As one broken 30-inch pipe in south west London proved, flooding the Kingston high street in a ‘major incident’ that required 70 firefighters in response.

 

Burst water pipes, a summer phenomenon?


 

Pressure in underground water pipes rises during periods of hot weather as households and businesses consume more water than normal. Adding to the recipe for disaster are increased UV rays beating down on exposed pipes. And, the cherry on top? Parched soil is loosened soil, allowing pipe anatomy to shift – bends, joints, and connectors have more space to move. Before you know it, pipes are bursting.

 

Though it seems the polar opposite of problems you’d expect to encounter during a heatwave (and subsequent water shortage), burst pipes can stimulate floods. Whilst the Kingston high street flood was instant, and rectified relatively quickly, it’s Still a costly clean-up mission.

 

Furthermore, future flooding is also a crucial concern. Drier soils that have been deprived of water for lengthy periods of time struggle to absorb rainwater as easily. So, whilst we might welcome the common occurrence of the post-heatwave thunderstorm to clear the muggy air, it’s also far more likely to induce an increased flood risk.

 

How soil moisture influences structural integrity


 

But that’s only the beginning. The fluctuating climate is catalysing other environmental hazards, including landslides and rockfalls. Soil moisture levels are one of the most powerful indicators of extreme weather cycles. The rates of soil shrinkage and fissures increasing in size during these drier months helps to ‘set the hydrological scene’ for the impact of future rainfall – how much water the soil will absorb, where, and is there a slope stability impact from this. And, with this year’s soil moisture levels below recent averages, it’s becoming more important than ever to monitor and react to it.

 

Think of a dam. Usually reliant on soil in some way or form to support their man-made structure, dehydrated earth can threaten their stability. When reservoir levels are high (traditionally the ‘norm’ for a nation that gets almost 149 rainy days each year), hydrostatic pressures help to stabilise the upstream slope of earth dams. But, as rainfall lessens, so too do reservoir levels. External hydrostatic pressures on the dam reduce, causing internal pore water pressures to change, influencing strength.

 

Combine this with the rapid drawdown of water from reservoirs during times of peak water usage and demand and the scope for critical slope stability is laid bare. And the likelihood of significant ground movement events, like slope failures.

 

Monitoring ground movement at water assets


 

Whilst measures, like wrapping weak spots in pipes with polyethylene to limit overheating, are helping to increase the resilience of assets, they’re not enough on their own. Like the lifestyle changes we’re making in an effort to counteract the consequences of the climate change crisis, there’s technology ready for adoption to help curb the effects of intense heat and water scarcity on our water networks.

 

Quite simply, increasing the amount of data we have on the ground surrounding water infrastructure improves our knowledge on how it behaves in a changing environment. Satellite-born InSAR can retrieve current and historic ground movement measurements from both broad and specific water asset locations. Trends and anomalies in the ground’s behaviour in the face of more frequent and severe climatic extremes can be identified, then leveraged in the bigger picture of preventing risk or occurrence of any resultant geohazards.

 

Against the record-breaking heatwave, it appears that our water network managed to uphold resilience – for now. But with the Met Office’s long-range forecast for August stating ‘dry weather is likely to persist’, ‘temperatures remaining above average widely’, and an ‘increased likelihood of thunderstorms’, the full effects remain to be seen.

 

Find out how to integrate InSAR into your water infrastructure’s resiliency plans by speaking with one of our SatSense experts!
SatSense Santa Tracker: Bringing Christmas Magic to Your DoorstepThursday, 05 December 2024 SatSense and Zonguldak Bülent Ecevit University Partner to Revolutionise Ground Movement Monitoring in TürkiyeTuesday, 23 July 2024 SatSense continues to support STEM students to drive innovationWednesday, 08 May 2024 Are UK water companies prepared for another record-breaking summer?Friday, 23 February 2024 Monitoring Rail Infrastructure Using InSARWednesday, 07 February 2024 Revolutionising Infrastructure Monitoring Using InSAR DataThursday, 01 February 2024 SatSense Gets Contract for the DRIPIN Demonstration ProjectWednesday, 24 January 2024 How can asset managers get the most out of InSAR? Monday, 21 August 2023 How can InSAR data be used in GIS software? Monday, 21 August 2023 7 Reasons Why Civil Engineers Should Be Using InSARMonday, 21 August 2023 SatSense and GNS Science Partner to Revolutionise Ground Movement Monitoring in New ZealandThursday, 20 July 2023 Do Onshore Wind Farms Come with Geotechnical Risk?Thursday, 22 September 2022 Our Water Networks Handled the Heat Last Time But What About the Next?Thursday, 11 August 2022 Analysing Bridge Movement Using Satellite DataFriday, 06 May 2022 To What Extent Can We Monitor Ageing Infrastructure?Tuesday, 03 May 2022 The Climate Change Challenge Facing Rail InfrastructureWednesday, 27 April 2022 Keeping Rail Asset Management on the Right Tracks with InSARWednesday, 06 April 2022 Remotely Monitoring Ground Movement for Water UtilitiesTuesday, 22 March 2022 A Damming DilemmaThursday, 10 March 2022 How Can Asset Managers Remotely Monitor Ground Movement?Tuesday, 08 March 2022 Using InSAR to Monitor Assets in Remote LocationsMonday, 28 February 2022 Overcoming Site Monitoring Challenges with InSARWednesday, 23 February 2022 Project Update: Using InSAR Data to Monitor Disused Coal Tips in WalesFriday, 28 January 2022 How Can Remote Technology Aid Tunnelling Engineers?Thursday, 13 January 2022 What Did 2021 Look Like for SatSense?Monday, 20 December 2021 Using InSAR to Monitor Rates of Coastal ErosionWednesday, 15 December 2021 Is it Time to Ground the Extraction of Groundwater?Tuesday, 30 November 2021 SatSense Appoints John McArthur as Chairman to Prepare for Further GrowthTuesday, 30 November 2021 Dam Important DataTuesday, 05 October 2021 Real Time Data Dashboards and the Future of Smart Asset MonitoringTuesday, 05 October 2021 LiDAR vs InSARMonday, 23 August 2021 SatShop Delivers Ground Movement Data at the Click of a ButtonThursday, 29 July 2021 The Light at the End of the TunnelWednesday, 21 July 2021 Join SatSense – we’re hiring!Thursday, 15 July 2021 Analysing movements of the UK’s railway with Network RailThursday, 24 June 2021 Using satellite data to reduce water leakageMonday, 19 April 2021 SatShop portal FAQ’s Friday, 09 April 2021 Satellite data at your fingertipsThursday, 04 March 2021 Avoiding mining disasters with InSAR dataTuesday, 26 January 2021 Using SatSense data to accelerate your geotechnical desk studyWednesday, 16 December 2020 Water treatment works expansionWednesday, 09 December 2020 Using InSAR data to magnify insight in previously unsighted industriesTuesday, 24 November 2020 Ways to improve InSAR data coverageWednesday, 07 October 2020 Automatically detecting movement of infrastructureFriday, 31 July 2020 Getting ground movement direction out of our dataWednesday, 08 July 2020 Creating the SatSense Data PortalTuesday, 07 July 2020 Detecting House Subsidence Using Satellites and InSARFriday, 05 June 2020 Risk indices for detecting ground movement issues using InSARMonday, 01 June 2020 Detecting sinkholes from spaceFriday, 08 May 2020 How SatSense stays ahead of the curveThursday, 07 May 2020 Matt reflects on joining SatSense and says a bit about himselfWednesday, 22 April 2020